- 预热温度
设定PCBA预热温度为30~40℃,半固化缺陷仍然存在,而且胶水填充效果非常糟糕。
- 不足的固化时间和温度
将固化温度从120℃提高到150℃,仍然可发现填充胶水固化不充分的缺陷。
- 固化炉不稳定
通过Cmk的测量,固化炉的Cmk在1.33以上,说明固化炉的稳定性不成问题。
- 锡膏助焊剂与胶水的兼容性
胶水成分内除了环氧树脂外还包含有其它各种固化元素,如固化剂,催化剂,交联剂等等。助焊剂残留可能与胶水中的固化剂发生反应而影响固化效果,助焊剂残留物对底部充胶质量有非常显著的影响。完成固化后的CSP锡球与Underfill材料间有明显的分离间隙。但清洗后样品锡球与填充材料的结合相当紧密,没有任何的间隙存在。
- 锡膏助焊剂残留
撬开需要进行底部充胶的CSP发现锡球周边覆盖有许多助焊剂残留。
- SMD和NSMD焊盘设计
注意到有填充缺陷的CSP焊盘设计为SMD,但其它没有缺陷的焊盘设计为NSMD。NSMD的焊盘与阻焊膜之间存在间隙,这道间隙可能容纳了残留的助焊剂从而减少了与Underfill材料在锡球上的接触面积。NSMD的焊盘设计对半固化的缺陷也许有帮助,但还需要更进一步的研究,而且修改焊盘设计需要较长的周期才能实行。
- 回流焊接温度曲线
较长的预热时间和回流时间可以降低PCBA助焊剂残留并以此改善固化问题,但是实验证明即使采用最长的预热和回流时间也只能稍微减轻而无法彻底解决半固化陷。考虑到实际品质和生产要求:必须严格控制回流焊接曲线的工艺窗口,所以此方法无法有效实施。
- 固化温度曲线
胶水成分与助焊剂残留之间的兼容问题是存在的,需要尝试优化固化温度曲线以改善结果:快速的上升斜率可能降低助焊剂对胶水固化剂的侵蚀速度,从而提升胶水的固化度。
将一对混有助焊剂残留物与Underfill胶水的样品分别用慢速和快速两种不同的上升斜率曲线进行固化实验。两种曲线的固化温度都为120℃。慢速上升斜率为1.1~1.2℃/s,而快速上升斜率为1.94℃/s。
实验结果显示:缓慢的上升固化斜率对胶水的固化不充分,胶水还处于柔软状态;但快速上升的固化斜率对胶水的固化效果良好,胶水已得到充分固化。
- DSC测试分析
外观的硬和软是一种主观的判断方式来断定胶水处于固化或非固化。但是固化和非固化的环氧材料特性大不相同,通过DSC (Differential scanning calorimetry) 可有效的鉴定出胶水固化和半固化的不同特性。
- 实验-1,只有胶水材料,以30℃/分钟的上升斜率从室温升至120℃并保持60分钟;根据胶水厂商的证实,此条件下的样品可达到100%的固化率;此样品被当作DSC的分析标本来计算固化度。另一种推荐条件为3分钟保持120℃,相比上一固化条件,此固化条件可达到85%的固化率。
- 实验-2,Underfill胶水和助焊剂残留物3:1混合,以28.5℃/分钟的上升斜率从室温升至130℃并保持2分钟。此条件为慢速的升温斜率(0.475℃/s) ;
- 实验-3,Underfill胶水和助焊剂残留物3:1混合,以91.5℃/分钟的上升斜率从室温升至130℃并保持4分钟, 此条件为快速的升温斜率(1.58℃/s)。
- 预热温度影响
比较PCBA预热和非预热所带来的不同胶水填充效果。两组实验的点胶工艺参数一样,但实验结果却大不相同。A组样品的预热温度为30-40℃,切片结果显示有较大的空洞存在;B组样品没有进行预热,虽然实验结果优于A组样品,但零星空洞仍然存在,无法达到100%填充效果。
- 玻璃板实验
为了研究空洞的形成过程,玻璃板被用来验证和模拟实际CSP Underfill胶水的毛细管作用现象。实验结果如下图所示,胶水在CSP周边的流动性要快于中间的锡球位置,这就是为什么所观察到的空洞都集中在CSP的中间位置。
如何搞定Underfill胶水固化填充不足
随着细间距CSP/PoP等集成电路封装越来越广泛地应用于各种电子产品中,此类元件的细小焊点可靠性就越来越受到大家的重视了。在热应力或机械应力作用下,精细的焊点可能出现断裂失效问题。现在业界普遍采用Underill工艺以降低应力对焊点的影响,但Underfill在操作过程中又可能出现一些制程问题而降低其保护效果。
为了更进一步确认验证以上分析,将两片需要做底部充胶的PCBA进行超声波清洗并烘烤125℃,4小时后进行填充切片,填充固化良好,实验结果证明助焊剂残留对胶水固化存在影响。
因此快速的固化上升斜率曲线 (> 1.5 ℃/秒) 可以作为解决Underfill胶水固化不足的有效途径。